
1

Exploiting Address Space Layout Randomization
(ASLR)

Deni Bačić
Faculty of Computer and Information Science,

Ljubljana, Slovenia
deni@bacic.si

Abstract—Address Space Layout Randomization (ASLR) is a
computer security technique that provides protection from buffer
overflow attacks. ASLR randomizes address space positions of
key data of a process, thus making it difficult for an attacker
to reliably jump to a particular exploited function in memory.
In this paper we study limitations of ASLR and present viable
exploitation options that can circumvent kernel space ASLR on
current operating systems. We also discuss mitigation strategies
against some of the attacks with their strengths and weaknesses
revealed.

Index Terms—Address Space Layout Randomization, Side
Channel, Kernel Vulnerabilities, Exploit Mitigation, Timing At-
tacks.

I. INTRODUCTION

MODERN computer architectures implement a wide va-
riety of methods to prevent memory corruption attacks

and overflows. ASLR is one of the most advanced ways of
protection. The basic idea is simple: randomize parts of the
memory and make it more difficult for an attacker to predict
target memory addresses. In most cases attackers are either
trying to locate their code to be executed (return-to-libc for
example) or trying to find the stack address to execute injected
shell code. In both cases, the operating system obscures
memory addresses and the attacker has to guess them, taking
him more time and resources. Usually a mistaken guess is non-
recoverable as it leads to the crash of either the application
or operating system. ASLR is currently widely used and can
be found in most modern computer operating systems such
as Linux, Windows, macOS and even most popular mobile
platforms such as iOS and Android. Adoption timeline of both
user-space and kernel-space ASLR can be seen on Fig. 1.

II. TECHNICAL BACKGROUND

Different kinds of buffer overflow attacks account for
major part of present exploits and 0-day vulnerabilities. C

Fig. 1. Timeline with adoption status of both user and kernel-space ASLR
in popular operating systems [1].

programming language assumption that programer should be
responsible for data integrity, allows us to write more data
than allocated to the buffer [2]. Program usually crashes, but
additional data is nevertheless overflown to other memory
addresses. Basically the attacker wants to execute custom code
that in most cases calls some kind of privilege escalation, that
gives him desired rights on the system. Modern programming
languages have implemented memory protection mechanisms,
but almost all vital OS and kernel modules are still written in
C.

III. ATTACK APPROACHES

Brute-force and memory disclosure attacks on ASLR are
the topic of several works [3] and [4], even mobile platforms
could be exploited to attacks of this kind. One of the first
ideas about attacking ASLR using cache-based timing side
attack was by R. Hund et al. [5]. They developed three attack
strategies, that were theoretically working, but in practice
very difficult to implement. Additionally, they exploited a
particular property of Intel CPU’s to determine which memory
addresses are allocated. Real world exploitation is limited by
the last-level cache noise from processor and need for the prior
knowledge of physical address of data. All described attacks
are caused by hardware side-channel or cache analysis and are
OS independent.

A. Intel specific improvements

Y. Jang et al. [1] improved the proposed attacks (meth-
ods?) by introducing a highly stable timing attack against
kernel-space ASLR, called DrK. The attack can precisely de-
randomize address the kernel layout. Basics of the exploit are
hidden in the CPU hardware feature called Intel Transactional
Synchronization Extensions (TSX). As the name implies, it
is present in modern Intel processing units. TSX aborts a
transaction without notifying the underlying kernel even when
the transaction fails due to critical error (page fault, access
violation). Errors of that kind would otherwise crash the
probing code or the system itself. DrK turns that property
into a precise timing channel. It determines the mapping
and execution status of the privileged kernel space. Noise
reduction, in contrast to attacks presented before, is visible
on Fig. 2. The exploit is very precise, works on all operating
systems (even in virtualized environments!) and generates no
visible footprint, making detection very difficult in practice.



2

B. Exploiting Branch Target Buffer

Article by D. Evtyushkin et al. [6] develops similar attack
to derive kernel and user-level ASLR offset using a side-
channel attack on the branch target buffer (BTB). It exploits
the observation that an adversary can create BTB collisions
between the branch instructions. This collisions influence the
the timing of attacker’s code, allowing him to identify the
locations of known branch instructions in the address space,
similarly as in DrK attack mentioned above. Work was further
improved with proof of concept how attacker can exploit base
OS even through virtual machine [7].

IV. MITIGATION APPROACHES

Currently there is no viable countermeasure to avoid de-
scribed attacks on ASLR, that would not produce massive
overhead and hurt both usability and performance of the
system.

First idea is to modify CPU to eliminate timing channels to-
tally, but obvious problem arises, hardware is already shipped
and deployed and cannot be modified only by microcode
or firmware updates. Another way of making attacks more
difficult is having more coarse-grained timer in system. In
reality, a lot of code uses the benefit of precise timing for
everyday operations. Using separate page tables for kernel
and user processes could help avoid TLB exploitation, but
it would have high overhead due to frequent cache flushes.
We could insert fake mapped and executable pages between
the real ones, but ASLR does not give enough space to
insert them efficiently. Monitoring of hardware events could
be implemented, but it is difficult to separate benign programs
from real attacks. Live ASLR re-randomization would also

Fig. 2. Noise reduction with TSX approach (second diagram) can be clearly
observed in contrast to previous attack methods above [1].

improve safety, but has very high performance impact as of
this date.

V. CONCLUDING REMARKS

In this paper we have discussed various ways of exploiting
a security feature implemented in almost all modern operating
systems. We concluded that even defence mechanisms can be
a security threat and should not be trusted blatantly. New
features in hardware and software that should improve the
performance of the system, can in fact hinder the security
when implemented incorrectly or without knowing the impact
on other processes and approaches. Unfortunately viable coun-
termeasures are still to be found and should encourage further
analysis.

REFERENCES

[1] Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address Space Layout
Randomization with Intel TSX,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 380–392.

[2] J. Erickson, Hacking: The Art of Exploitation. No Starch Press, 2008.
[3] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,

“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 298–307.

[4] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically
returning to randomized lib (c),” in Computer Security Applications
Conference, 2009. ACSAC’09. Annual. IEEE, 2009, pp. 60–69.

[5] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 191–205.

[6] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking branch predictors to bypass ASLR,” in Proceedings of 49th
International Symposium on Microarchitecture (MICRO), 2016.

[7] F. Wilhelm, “Poc for breaking hypervisor aslr us-
ing branch target buffer collisions.” [Online]. Available:
https://github.com/felixwilhelm/mario baslr


